Package: multilevelcoda 1.3.1
multilevelcoda: Estimate Bayesian Multilevel Models for Compositional Data
Implement Bayesian Multilevel Modelling for compositional data in a multilevel framework. Compute multilevel compositional data and Isometric log ratio (ILR) at between and within-person levels, fit Bayesian multilevel models for compositional predictors and outcomes, and run post-hoc analyses such as isotemporal substitution models. References: Le, Stanford, Dumuid, and Wiley (2024) <doi:10.48550/arXiv.2405.03985>, Le, Dumuid, Stanford, and Wiley (2024) <doi:10.48550/arXiv.2411.12407>.
Authors:
multilevelcoda_1.3.1.tar.gz
multilevelcoda_1.3.1.zip(r-4.5)multilevelcoda_1.3.1.zip(r-4.4)multilevelcoda_1.3.1.zip(r-4.3)
multilevelcoda_1.3.1.tgz(r-4.4-any)multilevelcoda_1.3.1.tgz(r-4.3-any)
multilevelcoda_1.3.1.tar.gz(r-4.5-noble)multilevelcoda_1.3.1.tar.gz(r-4.4-noble)
multilevelcoda_1.3.1.tgz(r-4.4-emscripten)multilevelcoda_1.3.1.tgz(r-4.3-emscripten)
multilevelcoda.pdf |multilevelcoda.html✨
multilevelcoda/json (API)
NEWS
# Install 'multilevelcoda' in R: |
install.packages('multilevelcoda', repos = c('https://florale.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/florale/multilevelcoda/issues
bayesian-inferencecompositional-data-analysismultilevel-modelsmultilevelcoda
Last updated 5 hours agofrom:518aeb117a. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 23 2024 |
R-4.5-win | OK | Nov 23 2024 |
R-4.5-linux | OK | Nov 23 2024 |
R-4.4-win | OK | Nov 23 2024 |
R-4.4-mac | OK | Nov 23 2024 |
R-4.3-win | OK | Nov 23 2024 |
R-4.3-mac | OK | Nov 23 2024 |
Exports:brmcodabsubbsubmarginsbuild.basesubbuild.rgbuild.sbpcompilrcomplrfixefis.brmcodais.complris.substitutionmultilevelcoda_simpivot_coordpivot_coord_refitpivot_coord_rotateranefsubsubmarginssubstitutionVarCorrwsubwsubmargins
Dependencies:abindaskpassbackportsbase64encbayesmbayesplotbayestestRBHbridgesamplingbrmsBrobdingnagbslibcachemcallrcheckmateclicodacodetoolscolorspacecolourpickercommonmarkcompositionscpp11crayoncrosstalkcurldata.tabledatawizardDEoptimRdescdigestdistributionaldoFuturedplyrDTdygraphsemmeansestimabilityevaluateextrafontextrafontdbextraoperatorsfansifarverfastmapfontawesomefontBitstreamVerafontLiberationfontquiverforeachfsfuturefuture.applygdtoolsgenericsggplot2ggridgesglobalsgluegridExtragtablegtoolshighrhrbrthemeshtmltoolshtmlwidgetshttpuvhttrigraphinlineinsightisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclelistenvloomagrittrmarkdownMASSMatrixmatrixStatsmemoisemgcvmimeminiUImunsellmvtnormnleqslvnlmenumDerivopensslparallellypillarpkgbuildpkgconfigplotlyplyrposteriorprocessxpromisespspurrrQuickJSRR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppParallelreshape2rlangrmarkdownrobustbaserstanrstantoolsRttf2pt1sassscalesshinyshinyjsshinystanshinythemessourcetoolsStanHeadersstringistringrsyssystemfontstensorAthreejstibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunxtablextsyamlzoo
Compositional Substitution Multilevel Analysis
Rendered fromD-substitution.Rmd
usingknitr::rmarkdown
on Nov 23 2024.Last update: 2024-06-09
Started: 2024-05-26
Improving MCMC Sampling for Bayesian Compositional Multilevel Models
Rendered fromE-simmodel-diag.Rmd
usingknitr::rmarkdown
on Nov 23 2024.Last update: 2024-11-18
Started: 2023-08-08
Introduction to Bayesian Compositional Multilevel Modelling
Rendered fromA-introduction.Rmd
usingknitr::rmarkdown
on Nov 23 2024.Last update: 2024-05-26
Started: 2023-07-27
Multilevel Model with Compositional Outcomes
Rendered fromC-composition-MMLM.Rmd
usingknitr::rmarkdown
on Nov 23 2024.Last update: 2024-05-26
Started: 2023-08-04
Multilevel Models with Compositional Predictors
Rendered fromB-composition-MLM.Rmd
usingknitr::rmarkdown
on Nov 23 2024.Last update: 2024-06-09
Started: 2023-08-04